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This work extends the study of the structure of wall-bounded flows using the topo-
logical properties of eddying motions as developed by Chong et al. (1990), Soria et
al. (1992, 1994), and as recently extended by Blackburn et al. (1996) and Chacin et
al. (1996). In these works, regions of flow which are focal in nature are identified by
being enclosed by an isosurface of a positive small value of the discriminant of the
velocity gradient tensor. These regions resemble the attached vortex loops suggested
first by Theodorsen (1955). Such loops are incorporated in the attached-eddy model
versions of Perry & Chong (1982), Perry et al. (1986), and Perry & Marusic (1995),
which are extensions of a model first formulated by Townsend (1976). The direct
numerical simulation (DNS) data of wall-bounded flows studied here are from the
zero-pressure-gradient flow of Spalart (1988) and the boundary layer with separation
and reattachment of Na & Moin (1996). The flow structures are examined from the
viewpoint of the attached eddy hypothesis.

1. Introduction
Townsend (1976) was the first to show by analysis how the properties of attached

eddies and their distribution of scales affect the mean statistics of the flow. It is
assumed that there exist an assemblage of attached eddies with a range of length
scales and the characteristic length scale of a given eddy is proportional to the
height it extends from the wall. These eddies were treated by Townsend as inviscid
motions which convect with a ‘velocity of slip’ relative to the wall. This velocity of
slip overcomes the condition of no-slip by the existence of a viscous sublayer. In the
particular analysis of Townsend, the characteristic velocity scale of the eddies is taken
to be the wall shear velocity. The analysis was simplified by assuming geometrical
similarity in attached eddy shapes and it is felt that this is not too far from the truth
and any departure will have only a weak effect on the final results. The analysis of
Townsend has been extended in many stages by Perry & Abell (1977), Perry & Chong
(1982), Perry, Henbest & Chong (1986), Perry, Li & Marusic (1991), Perry & Marusic
(1995) and Marusic & Perry (1995) so that not only broadband intensity distributions
are explained as was done by Townsend but also the mean flow and spectra can be



226 M. S. Chong, J. Soria, A. E. Perry, J. Chacin, B. J. Cantwell and Y. Na

deduced from assumed scale distributions. If these various developments prove to
be correct then there is the possibility that this will aid in producing more realistic
models for engineering calculations of the streamwise growth and evolution of the
various mean statistical quantities of turbulent boundary layers, e.g. see Perry et al.
(1991), Perry, Marusic & Li (1994). Current models such as those based on k–ε
theories are controversial and are not universally accepted. One noteworthy feature
of the attached eddy approach is that the Biot–Savart law and scale distributions give
a connection between the mean vorticity distribution and the Reynolds shear stress
distribution and this is an important ingredient in any closure scheme.

Townsend made no commitment regarding the actual eddy shapes. However, the
vortex loop structures suggested by Theodorsen (1955) certainly fit the role of
Townsend’s attached eddies. The attached eddy hypothesis has recently been ex-
tended by Perry & Marusic (1995) and Marusic & Perry (1995) to include boundary
layers developing in arbitrary pressure gradients and it was found necessary to in-
troduce the concept of ‘wall eddies’ where the vortex cores extend to the wall and
the ‘wake eddies’ which consist of spanwise undulating vortex cores which do not
connect with the wall, and this fits in with the mean flow wall–wake model of Coles
(1956). The establishment of the existence of these various structures is crucial to
further developments. Unfortunately, at present the evidence for their existence is
circumstantial, i.e. they can be used analytically for establishing a logarithmic defect
law, a −1 power spectral density for the streamwise velocity fluctuations and other
observed properties and so their existence can be inferred but it is difficult to see
these structures directly. Flow visualization helps in this regard but is difficult to
interpret rigorously. This paper aims to provide some direct evidence using DNS
data for both zero-pressure-gradient boundary layers and a layer which approaches
separation, separates and then reattaches.

The vortex loops envisaged by Theodorsen (1955) and also by Head & Bandy-
opadhyay (1981) were inspired by flow visualization and are referred to by many
names depending on the shape one believes they possess, e.g. horseshoes, hairpins,⋂

, Λ or Π eddies, etc. A problem immediately arises as to what constitutes a vortex
core. There has been some debate regarding this over the years and many workers
have been involved, e.g. Truesdell (1954), Cantwell (1979), Vollmers (1983), Dallman
(1983), Chong, Perry & Cantwell (1989, 1990), Robinson (1991), Lugt (1979), Jeong
& Hussain (1995), Perry & Chong (1994), and Soria & Cantwell (1994), to mention
a few. To avoid endless discussion and debate the authors will simply identify those
regions in the flow which are ‘focal’, to be defined shortly, and refer to them as ‘focal
regions’. The attached eddies postulated in the attached eddy hypothesis need not
necessarily be focal since this condition depends on the relative strengths of the local
rate-of-strain tensor and the local rate of rotation tensor (defined in (9) and (10)
respectively). The results of the attached eddy hypothesis are derived purely from the
Biot–Savart law and in no way depend on the above relative strengths. Whether or
not a region of vorticity is focal depends on the rate-of-strain environment in which
it is embedded and so also do all definitions of a vortex core. Nevertheless it is felt
that most if not all of the attached eddies should display extensive focal regions as a
result of the work of Blackburn, Mansour & Cantwell (1996), who examined the data
from channel flow computations of Kim (1989). Here focal regions were found to
exist in tubes, some of which extended from very close to the wall to the centreplane
of the channel. The authors consider these to be the clearest and most spectacular
indicators of eddying motions so far seen in DNS data and at first sight look like the
attached eddies envisaged by Perry & Chong (1982).
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Figure 1. Local non-degenerate topologies in the (Q,R)-plane. SF/S: stable focus/stretching,
UF/C: unstable focus/contracting, SN/S/S: stable node/saddle/saddle and USN/S/S: Unstable
node/saddle/saddle.

Following Chong et al. (1989, 1990), the geometry of the streamline pattern close
to and surrounding any point in the flow, as seen by a non-rotating observer moving
with the velocity of that point, can be classified by studying certain invariants of the
velocity gradient tensor Aij = ∂ui/∂xj at that point. Here ui is the velocity vector and
xi is the space vector. The characteristic equation of Aij is

λ3 + Pλ2 + Qλ+ R = 0, (1)

where P , Q and R are the tensor invariants. These are

P = − tr(A) (2)

Q = 1
2
(P 2 − tr(A2)) (3)

and

R = − det(A). (4)

For incompressible flow, P = 0 from continuity and so

λ3 + Qλ+ R = 0. (5)

The eigenvalues λ which determine the topology of the local flow pattern are
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Figure 2. Trajectories of constant D on the (R,Q)-plane.

determined by the invariants R and Q. In fact the (R,Q)-plane, shown in figure 1, is
divided into regions according to flow topology.

The discriminant of Aij is defined as

D = 27
4
R2 + Q3 (6)

and the boundary dividing flows with complex eigenvalues from those with all real
eigenvalues is

D = 0. (7)

Figure 2 shows contours of D on the (R,Q)-plane. For D > 0, (5) admits two
complex and one real solution for λ. Such points are called foci and are part of
the focal regions mentioned earlier. If D < 0, all three solutions for λ are real and
the associated pattern is referred to as a node-saddle-saddle point according to the
terminology adopted by Chong et al. (1990).

The velocity gradient tensor can be split into two components:

Aij = Sij +Wij, (8)

where Sij is the symmetric rate of strain tensor and Wij is the skew symmetric rate of
rotation tensor. These are given by

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(9)

and

Wij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (10)

The invariants of Sij are Ps, Qs, and Rs and are defined in an analogous way to the
invariants of Aij . For incompressible flow Ps = 0,

Qs = − 1
2
SijSij (11)
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and

Rs = − 1
3
SijSjkSki. (12)

The corresponding invariants of Wij are Pw , Qw and Rw . Pw = Rw = 0 but Qw is
non-zero and is given by

Qw = 1
2
WijWij , (13)

which is proportional to the enstrophy density and is always positive. Another relation
of interest is

φ = 2νSijSij = −4νQs, (14)

where φ is the dissipation of kinetic energy into heat per unit mass and it should be
noted that Qs is always a negative quantity.

It can be shown that

Q = Qw + Qs = 1
2
(WijWij − SijSij). (15)

According to the work of Vieillefosse (1982, 1984) and the more recent work of
Cantwell (1992), the evolution of the velocity gradient tensor Aij for a fluid particle
is given by

dAij
dt

+ AikAkj − AkmAmk
δij

3
= Hij. (16)

Here d/dt is the total derivative, δij is the Kronecker delta and

Hij = −
(

∂2p

∂xi∂xj
− ∂2p

∂xk∂xk

δij

3

)
+ ν

∂2Aij

∂xk∂xk
. (17)

If the viscous term and the pressure Hessian terms are small, the evolution of
Aij for fluid particles follows the so-called restricted Euler equation, and solution
trajectories of such particles follow the contours of constant D on the (R,Q)-plane
as shown in figure 2. It is thought that this might be an appropriate description of
the motions for fine-scale eddies at high Reynolds numbers. It is found here that this
restricted Euler equation is not valid for the Spalart (1988) dataset, which is of course
at low Reynolds number. However, computations show that once a particle is focal it
is highly probable that it will remain focal. This study of particle trajectories on the
(R,Q)-plane gives us a first glimpse of how fluid dynamics might be combined with
the usual kinematic description of eddy structures as has been used in the attached
eddy hypothesis.

It has been pointed out that three-dimensional plots of vortex lines or particle
trajectories are extremely complex and confusing and not very helpful in gaining an
insight into eddying motions (Cantwell 1979). However, a very interesting feature of
the isosurfaces of constant D found by Blackburn et al. (1996) is that they enclose a
rather concentrated and well-ordered bundle of vortex lines. Finally, Blackburn et al.
found that isosurfaces of constant D were superior to isosurfaces of enstrophy density
or dissipation of kinetic energy for showing clear, well-defined structures. The authors
do not fully understand why this should be and this is a question which needs to be
pursued in future work.

2. Results
2.1. Normalization of the discriminant

The raw values of the discriminant D were used in the case of the Spalart DNS
data without any additional normalization. In the case of the Na & Moin DNS
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Figure 3. Isosurfaces of discriminant (D ≈ 0) for zero-pressure-gradient data of Spalart for
Reθ = 670 (from Chacin et al. 1996).

dataset, it is assumed that the inflow free-stream velocity is unity and that all length
scales in the database are normalized by δ∗in, the displacement thickness of the inflow
boundary layer. The computed raw values of D were normalized by a velocity gradient
representative of the mean separation bubble flow to the power of 6. This resulted in
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the raw values of D being multiplied by a factor of 106, and so maximum values of
normalized D were of order 106. Typical values of D used in its isosurface visualization
were of the order of 1–10.

2.2. Zero-pressure-gradient boundary layer

Figure 3 shows a clear picture (from Chacin, Cantwell & Kline 1996) of isosurfaces
of the discriminant for part of the data of Spalart (1988) for a zero-pressure-gradient
turbulent boundary layer at Reθ = 670. Some Theodorsen-type vortices are apparent
together with intertwining tubes forming braids which are near the surface and are
aligned in the streamwise direction. Figure 4(a–c) shows the same flow case of Spalart
but for a different time frame covering a larger field of data. The figures are ordered in
diminishing values of D. Figure 4(a) shows structures which could be interpreted as

⋂
or Λ eddies when viewed from upstream. These loops appear to lean in the streamwise
direction. As the ‘threshold’ is reduced (i.e. as the value of D for the isosurface is
reduced), more attached vortex loops become apparent, but the picture becomes
confusing. The structures are not as smooth as the Chacin et al. (1996) data, and
this is because of computer storage problems for the graphical visualization. There is
nonetheless a suggestion of Theodorsen-type structures with focal tubes coming down
to the wall and running along it in the negative streamwise direction. Superposition
of vortex lines (done at the computer terminal) is confusing, but they tend to loop
and lean in the streamwise direction in a manner similar to the isosurfaces of D.

Particle migration on the (R,Q)-plane shows that there is a rapid convergence
to small but positive D. Figure 5 shows a typical calculation for a selection of
particles with D > 0 at the initial time. These particles are identified at t = 0 and
then followed in space as the DNS code is run forward in time for several eddy
characteristic turnover times. These calculations show that once a particle has a
positive discriminant (i.e. once it is focal), it has a high probability of remaining focal
over several eddy turnover times. Various models for the Hij term are currently being
formulated. One recent model by Martin & Dopazo (1995) shows ensemble-averaged
(R,Q)-trajectories with the topology sketched in figure 6, and this is consistent with
the above findings. Time evolution computations and animations of the isosurfaces
of the discriminant show that such surfaces retain their shape and identity for
considerable streamwise distances. When viewing a movie made up of successive
frames, these structures appear to convect downstream in close accordance with
Taylor’s hypothesis. Some frames from the movie are shown in figure 7. Smaller
structures close to the wall appear to be convecting at smaller velocities than the
larger structures further away from the wall. All of this is consistent with aspects of
the attached eddy model discussed by Perry et al. (1986).

In zero-pressure-gradient layers, there seems to be a strong link between these
attached eddies and the Reynolds shear stress. Perry & Chong (1982) showed that it
is likely that they contribute almost entirely to the mean vorticity distribution and the
Reynolds shear stress distribution. Figure 8 shows that peaks in the time-averaged
values of −u′v′ occur near to and on either side of the contour D = 0 on the
R > 0 branch of the (R,Q)-plane. Here u′ and v′ are the streamwise and wall-normal
components of the velocity fluctuations respectively.

Chacin et al. (1996) found that the contributions to the Reynolds shear stress by
an attached eddy come from regions close in physical space to the isosurface of
D, which is small and positive as seen in figure 10 of that reference. They found
that high Reynolds stress events are strongly correlated with changes in sign of
the discriminant. This is important near the wall where the discriminant and the
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Figure 4. Isosurface of constant discriminant, D, for zero-pressure-gradient turbulent boundary
layer flow at Rθ = 670 for the different threshold values of (a) D = 1.0, (b) D = 0.25 and (c) D = 0.1.
The displayed boundary layer structures cover ∆x+ = 2442, y+

min = 6.4, y+
max = 375 and ∆z+ = 1221.

Here + denotes viscous lengths.



Turbulence structures of wall-bounded shear flows 233

Q

R

(a)

0.76

0.0

–0.38

–0.76

–0.2 –0.1 0.1 0.20.0

D = 0

Q

R

(b)

0.76

–0.38

–0.76

–0.2 –0.1 0.1 0.2

D = 0

0.00.0

0.00.0

0.380.38

Figure 5. Particle migration on the (R,Q)-plane computed from the zero-pressure-gradient
turbulent boundary layer data of Spalart (1988).

vorticity have a completely different character. The role of the discriminant needs to
be clarified. One approach would be to analyse the velocity gradient tensor induced
by artificial isolated eddies of various shapes using the Biot–Savart law in the manner
of Perry & Marusic (1995).

Figures 9–12 show joint probability distribution diagrams of the various topological
invariants. Figure 9 shows the joint p.d.f.’s of R and Q with figures 9(a–d) showing the
results for the sublayer, buffer zone, logarithmic region, and wake region respectively.
All the joint p.d.f.’s have a similar tear-drop shape around the origin with the contour
levels shown on a logarithmic scale. The joint p.d.f. in the buffer layer has the largest
extent in the (R,Q)-plane for a given contour, indicating that the velocity gradients
attain their largest values within this region of the turbulent boundary layer. The
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Figure 6. Particle trajectories using a linear diffusion model for Hij of Martin & Dopazo (1995).

most significant effect in going from the viscous sublayer to the buffer region is a
three-fold increase in maximum value of |Q| for Q > 0 as a result of a significant
increase in Qw or enstrophy in some regions without a compensating increase of Qs.
This result is supported by the joint p.d.f. data between Qw and Qs shown in figure
11(a, b). The increase in |Q| for Q < 0 is not quite as large, being a factor of 1.5. The
extent of increase in |R| is of the same order for R < 0 and R > 0. In the logarithmic
region, the magnitude of the velocity gradient has decreased compared to the buffer
layer. However, the shapes appear to be self-similar from the buffer zone onwards.

Figure 10 shows the joint p.d.f. of the invariants of the rate-of-strain tensor Rs
and Qs. In the sublayer, figure 10(a) shows that most of the rate of strain is two-
dimensional, since the data collect along the Qs axis and very high −Qs values are
encountered. This indicates that, locally, the highest dissipation of kinetic energy
per unit mass occurs in the viscous sublayer and is produced by motions which are
essentially two-dimensional. In the buffer zone results shown in figure 10(b) there is
a drift towards Ds = 0, and the maximum value of |Qs| has reduced to half that of
the sublayer. Here Ds is the discriminant of the rate-of-strain tensor. In the buffer
zone a large number of points in the flow have moved towards the origin of the
(Rs, Qs)-plane. In figure 10(c), the logarithmic region, there is a further decrease in the
maximum value of |Qs| and further movement of the joint p.d.f. towards the Ds = 0
line. In this region the joint p.d.f. between Rs and Qs has taken on the shape which is
characteristic of a number of other turbulent flows including mixing layers (Soria et
al. 1994), wakes (Soria & Chong 1993), and channel flow (Blackburn et al. 1996). The
rate of strain is highly three-dimensional in the logarithmic region. In the wake region
shown in figure 10(d), the maximum value of |Qs| is orders of magnitude smaller than
the other regions, which implies that very little dissipation is occurring there. The
shape of the joint p.d.f. in the wake region is similar to that in the logarithmic region
but with its extent reduced in the (Rs, Qs)-domain.

Figure 11 shows the joint p.d.f.’s between −Qs and Qw . A line of 45◦ through the
origin is symptomatic of vortex sheet behaviour or two-dimensional shearing provided
R = 0. Data running close to the Qw-axis could be interpreted as belonging to vortex
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Figure 7. Three frames of a movie showing structures convecting downstream. Isosurfaces of
discriminant (D ≈ 0) for zero-pressure-gradient data of Spalart for Reθ = 670. The time (tU∞/δ

∗)
sequence is: (a) 0, (b) 2.1 and (c) 3.9. This spans just over one eddy turnover time.

tubes, and data close to the −Qs-axis correspond to irrotational rates of strain (Perry
& Chong 1994). In figure 11(a) the sublayer results show a sheet-like behaviour, which
is not surprising. All regions of the flow in the viscous sublayer have an approximate
balance between Qw and −Qs which in turn implies that most of the regions of the
flow have a Q value of approximately zero in the viscous sublayer as illustrated in
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Figure 8. Time-averaged values of −u′v′ for zero-pressure-gradient turbulent boundary layer flow
with Reθ = 670 in (a) viscous sublayer y+ < 5.0 (b) buffer layer, 5.0 < y+ < 41, (c) logarithmic
region, 41 < y+ < 107 and (d) wake region, y+ > 107. The contour levels shown are normalized by
u2
τ .

figure 9(a). In figure 11(b), the buffer zone results are shown and there is a mixture
of various types of motions, but vortex sheet behaviour is still apparent. However, a
noticeable increase in the regions with Qw > −Qs is observed in the buffer layer as
a result of the vorticity being aligned with the strain field in such a way that a net
stretching of vorticity occurs as indicated in the joint p.d.f. data of figure 12(b) to be
discussed later. Although there is also an increase in the regions of the flow in the
buffer layer in which −Qs > Qw , this effect is not as pronounced. Figure 11(c) shows
a complete mixture of motion types and so also does figure 11(d). Of note in the
logarithmic region is that the data in figure 11(c) show that regions with large values
of Qw range from regions with very small values of −Qs to regions with Qw ≈ −Qs.
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Figure 9. Joint probability density function between Q and R for zero-pressure-gradient turbulent
boundary layer flow with Rθ = 670 in (a) viscous sublayer y+ < 5.0 (b) buffer layer, 5.0 < y+ < 41,
(c) logarithmic region, 41 < y+ < 107 and (d) wake region, y+ > 107.

There is a tendency for the peak value of Qw to be larger than the peak value of
−Qs. This is more pronounced in the wake region where the peak value of Qw is
nearly 50% higher than the peak value of −Qs as shown in figure 11(d). The data
also show that the regions of the wake domain of the boundary layer containing the
peak Qw value have a relatively low value of −Qs, whereas the peak −Qs regions are
associated with motions which range from irrotational to vortical with Qw ≈ −Qs.
Although most of the results presented in figures 9–11 are consistent with the results
of Blackburn et al. (1996), the latter two presented in figures 11(c, d) differ. In the
turbulent channel flow investigated by Blackburn et al. (1996), the peak values of
−Qs are found to be larger than the peak values of Qw both in the logarithmic and
wake regions. This would tend to suggest a difference between these wall-bounded
flows indicating that vortical structures with less mechanical dissipation and which
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boundary layer flow with Rθ = 670 in (a) viscous sublayer y+ < 5.0 (b) buffer layer, 5.0 < y+ < 41,
(c) logarithmic region, 41 < y+ < 107 and (d) wake region, y+ > 107.

are therefore longer lived are present in the outer layers of the turbulent boundary
layer which are not present in the channel flow.

The component of the strain field strength, −Qs, which can amplify or reduce
vorticity has been investigated using the joint p.d.f. between |σ|σ/2 and Qw . Here

σ =
ωiSijωj

ωkωk
, (18)

where ωi is the vorticity vector. Also it can be shown (e.g. see Soria & Chong 1993)
that

ωiSijωj = 4(Rs − R). (19)

The quantity |σ|σ/2 is a measure of the stretching or contracting in the direction
of the vorticity vector. Figure 12 shows the p.d.f.’s for the different domains of
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5.0 < y+ < 41, (c) logarithmic region, 41 < y+ < 107 and (d) wake region, y+ > 107.

interest in the turbulent boundary layer. Interestingly, in all cases shown in figure
12 the highest vorticity has no stretching. In the viscous sublayer there are as many
points where the vorticity is being stretched as there are points where the vorticity is
being contracted. This picture changes markedly in the buffer layer where the peak
stretching of vorticity has increased somewhat uniformly for regions with low to 0.5
of peak Qw values. This has resulted in an increase of regions in which Qw > −Qs as
indicated figure 12(b). The peak vorticity contraction has also increased by a factor
of 2 in the buffer layer. However, this increase is present in regions of the buffer
layer in which the vorticity is already inherently low and hence does not contribute
to reducing the peak Qw regions in the buffer layer. In the logarithmic region and
the wake region the stretching or contracting in the direction of vorticity reduces
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Figure 12. Joint probability density function between |σ|σ/2 and Qw for zero-pressure-gradient
turbulent boundary layer flow with Rθ = 670 in (a) viscous sublayer y+ = 1.2 (b) buffer layer,
y+ = 16, (c) logarithmic region, y+ = 87 and (d) wake region, y+ = 243.

continually as do the peak Qw values in their respective joint p.d.f. As shown in
figure 12(c, d) in both regions of the turbulent boundary layer there is a tendency for
stretching of vorticity to predominate over contraction of vorticity. These results are
qualitatively consistent with other inhomogeneous turbulent flow calculations such as
the turbulent plane wake of Soria & Chong (1993).

Figure 13 shows the conditional-volume-integrated Qw and Qs for D greater than
a specified threshold value as a function of this threshold value of D. These volume
integrals have been normalized by the total volume integral of Qw and Qs respectively.
In addition to the cases including the viscous zone, these normalized conditional
integrals have been computed for y+ > 6.4, thus eliminating the viscous sublayer
contribution, and for y+ > 37.4, thus eliminating the entire viscous zone contribution.
The results show that independent of the y+ threshold, focal regions account for
approximately 75% of all volume-integrated Qw (i.e. enstrophy) and 66% of all
volume-integrated Qs (i.e. dissipation of mechanical energy).
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Figure 13. Conditional volume integrals of Qs and Qw normalized by the volume integrals of Qs
and Qw respectively as a function of the cut-off value of the discriminant (D).
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Figure 14. Mean streamline pattern for a turbulent boundary layer with separation and
reattachment.

2.3. Separating and reattaching boundary layer

Figure 14 shows the mean flow streamlines of a turbulent boundary layer which
nominally starts as a zero-pressure-gradient layer using the Spalart data of Rθ = 330
as an inflow boundary condition. These computations were carried out using a finite
differences method and further details can be found in Na & Moin (1996). As the
flow moves downstream, the pressure gradient is arranged to be zero, then adverse,
and then favourable, resulting in a separation bubble. The flow bears a strong
resemblance to the experiment of Perry & Fairlie (1975), but the Reynolds number
for that experiment was orders of magnitude higher than this computation.

Figure 15(a) shows an elevation view of the isosurfaces of the discriminant, and
one can see a myriad of structures, many of which extend through from the wall to
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Figure 15 (a,b). For caption see facing page.

the outer edge of the boundary layer and generally lean in the streamwise direction.
The structures leave the wall completely downstream of the mean separation point
and ride over the separation bubble and then reattach. In the separation bubble
there is an extensive region which seems to be devoid of fluid particles with positive
discriminant. Figure 16(a) shows the instantaneous surface limiting streamlines or
‘skin friction lines’. In the upstream part of the flow, bifurcation lines (curves towards
which neighbouring trajectories asymptote) are most evident. The precise definition
and properties of such lines are given by Hornung & Perry (1984) and Perry &
Hornung (1984). As the pressure gradient becomes adverse, the skin friction lines
reveal critical points all over the surface prior to the mean flow separation region.
This means that there exist momentarily small-scale flow reversals scattered over the
region prior to the large-scale mean separation bubble. Under the bubble, the scale or
spacing of the critical points is much larger than in the mean attached flow and large
nodes of separation and reattachment are evident near the mean flow separation and
reattachment ‘lines’ respectively. After reattachment, bifurcation lines are re-formed
after a short streamwise distance with a much wider spanwise spacing than upstream
of the separation bubble. This spacing is no doubt related to the viscous scaling as a
lower shear velocity gives rise to the wider spacing.

Figure 16(b) shows the surface vortex lines which are orthogonal to the skin friction
lines. In regions far upstream and downstream of the separation bubble, kinks in
the vortex lines indicate a bifurcation line in the skin friction lines. Hornung &
Perry (1984) showed that near a bifurcation line, neighbouring skin friction lines are
exponential curves and the vortex lines are orthogonal parabolas. Figure 17 shows
skin-friction lines and vortex lines superimposed for selected parts of the flow and
the bifurcation patterns just mentioned are apparent. This orthogonality property
throughout the limiting wall field acts as a useful check on the correctness of our data
processing and of some aspects of the computations. Critical points in the limiting
surface streamlines are also critical points in vorticity. In the separation region, the
large velocity field nodes which are apparent are foci in the vorticity field.
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Figure 15. Isosurfaces of constant D ∼ 1 to 10 showing focal structures in a turbulent boundary
layer with separation and reattachment from x/δ∗in ≈ 90 to x/δ∗in ≈ 300. (a) Elevation views.
(b) Plan views. (c–f ) Enlarged views of (a) in going from left to right.
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Figure 16. (a) Skin-friction lines and (b) surface vorticity lines from x/δ∗in ≈ 90 to x/δ∗in ≈ 300.

In figure 15, the side and plan views of the isosurfaces of the discriminant show
that the structures appear to be pulled apart and stretched as they ride over the
separation bubble. Coles (1956, 1957) formulated a hypothesis for the mean velocity
profiles which considers a turbulent boundary layer to consist of two components
superimposed – namely a wall component which follows the universal law of the wall
and a wake component which follow a universal law of the wake. Recently this has
been extended to include the turbulence structure by Perry & Marusic (1995) and
Marusic & Perry (1995) where the wall component for both mean flow and Reynolds
stress is considered to be generated by wall attached eddies where the vortex lines
connect to the wall like the Theodorsen-type eddies as shown sketched in figure
18(a). The wake component of velocity and the peak in the Reynolds shear stress
which occurs well away from the wall when the Coles wake factor is appreciable
are considered to be generated by wake eddies which are thought to consist of
spanwise undulating vortex cores as shown in figure 18(b). This model is supported
by mean flow, broadband turbulence and spectral measurements and an analysis
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Figure 17. Skin-friction lines and surface vorticity lines superimposed. (a) Unseparated region. (b)
Separated region.
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Figure 18. (a) Wall eddies and (b) wake eddies, after Perry & Marusic (1995). Note that here,
unlike earlier convention, z is the coordinate normal to the wall rather than y; x is the streamwise
direction; K is circulation, r0 is the size of the vortex core, Ω is vorticity and δ is the height of the
eddy from the wall.
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using convolution integrals for computing the effect of a random array of eddies with
a range of scales (see Perry & Marusic 1995 for details). It is almost obvious from
the picture of the isosurface of the discriminant in figure 15 that as the flow develops
in the adverse pressure gradient and as the Coles wake factor increases, more of
the eddies which contribute to the Reynolds shear stress and mean flow vorticity
are eddies which are not connected to the wall. Once separation has occurred, there
are no eddies connected with the wall. Unfortunately, memory limitations of the
flow visualization software prevented a full rendering of the details of the flow field,
causing the isosurfaces to appear lumpy and unstructured.

3. Conclusions
This study has shown that structures carrying Reynolds shear stress in zero-

pressure-gradient layers consist of attached vortex loops of the type envisaged by
Theodorsen (1955), Perry & Chong (1982) and others. These structures form vortex
tubes or arches of positive discriminant of the velocity gradient tensor. The evidence
presented here indicates that Reynolds stress generation is correlated with a change
in sign of the discriminant of the velocity gradient tensor.

For adverse-pressure-gradient layers, there is encouraging evidence of structures
carrying Reynolds shear stress which are not connected to the wall and that there
is a combination of wall and wake structures as suggested by the work of Perry &
Marusic (1995).
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